Wet/Dry Cycling Durability of Cement Mortar Composites Reinforced with Micro- and Nanoscale Cellulose Pulps

نویسندگان

  • Josep Claramunt
  • Mònica Ardanuy
  • Lucia J. Fernandez-Carrasco
چکیده

A combination of reinforcements at different levels can have a synergetic effect on the final properties of a composite. The aim of this work was to produce, evaluate, and compare the wet/dry cycling durability of the exposure of cement composites reinforced with conventional pulps at the micro-scale level, with nanofibrillated cellulose fibers at the nano-scale level, and with combinations of both reinforcements (hybrid composites). To evaluate the durability of their mechanical properties, the composites were tested under flexural loading after 28 days of humidity chamber curing and after 20 wet/dry accelerating aging cycles. Composites reinforced with the nanofibrillated cellulose exhibited significantly higher flexural strength and flexural modulus, but they had lower fracture energy values than those reinforced with conventional sisal fibers. Moreover, the hybrid composites with a high content of nanofibrillated cellulose maintained or even improved their properties after aging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanofibrillated Cellulose (nfc) as a Potential Reinforcement for High Performance Cement Mortar Composites

In this work, nanofibrillated cellulose (NFC) has been evaluated as a potential reinforcement for cement mortar composites. Two types of vegetable fibres with different composition and properties (cellulose content and microfibrillar angle), sisal, and cotton linters pulps, were initially characterised in order to assess their reinforcing capability. Sisal pulp was found to be most suitable as ...

متن کامل

Cellulosic fiber reinforced cement-based composites: a review of recent research

In the last few years, an increase in interest has been given to the use of cellulose fibers as alternatives for conventional reinforcements in composites. The development of commercially viable environmentally friendly and healthy materials based on natural resources is on the rise. In this sense, cellulosic fibers as reinforcements for cement mortar composites constitute a very interesting op...

متن کامل

Transport Properties of Carbon-Nanotube/Cement Composites

This paper preliminarily investigates the general transport properties (i.e., water sorptivity, water permeability, and gas permeability) of carbon-nanotube/cement composites. Carboxyl multi-walled carbon nanotubes (MWNTs) are dispersed into cement mortar to fabricate the carbon nanotubes (CNTs) reinforced cement-based composites by applying ultrasonic energy in combination with the use of surf...

متن کامل

Durability of Mortar Incorporating Ferronickel Slag Aggregate and Supplementary Cementitious Materials Subjected to Wet–Dry Cycles

This paper presents the strength and durability of cement mortars using 0–100% ferronickel slag (FNS) as replacement of natural sand and 30% fly ash or ground granulated blast furnace slag (GGBFS) as cement replacement. The maximum mortar compressive strength was achieved with 50% sand replacement by FNS. Durability was evaluated by the changes in compressive strength and mass of mortar specime...

متن کامل

EffectofMetakaolin and Nano-SiO2onshort and Long-term shrinkageofself-compactingcement sandmortar

The use of cementitious products isincreasing in the world,Thusreplacement part of cement with pozzolanic materials reduced energy consumption and preserve natural resources and the environment and also improve the mechanical properties and durability of the cement mortar.Furthermore Nano technology has promptedto tremendous developments in technology of building materials in recent yearsso use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015